Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 5201, 2024 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-38431684

RESUMO

Whole genome sequencing (WGS) of Mycobacterium tuberculosis offers valuable insights for tuberculosis (TB) control. High throughput platforms like Illumina and Oxford Nanopore Technology (ONT) are increasingly used globally, although ONT is known for higher error rates and is less established for genomic studies. Here we present a study comparing the sequencing outputs of both Illumina and ONT platforms, analysing DNA from 59 clinical isolates in highly endemic TB regions of Thailand. The resulting sequence data were used to profile the M. tuberculosis pairs for their lineage, drug resistance and presence in transmission chains, and were compared to publicly available WGS data from Thailand (n = 1456). Our results revealed isolates that are predominantly from lineages 1 and 2, with consistent drug resistance profiles, including six multidrug-resistant strains; however, analysis of ONT data showed longer phylogenetic branches, emphasising the technologies higher error rate. An analysis incorporating the larger dataset identified fifteen of our samples within six potential transmission clusters, including a significant clade of 41 multi-drug resistant isolates. ONT's extended sequences also revealed strain-specific structural variants in pe/ppe genes (e.g. ppe50), which are candidate loci for vaccine development. Despite some limitations, our results show that ONT sequencing is a promising approach for TB genomic research, supporting precision medicine and decision-making in areas with less developed infrastructure, which is crucial for tackling the disease's significant regional burden.


Assuntos
Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Tuberculose , Humanos , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia , Antituberculosos/farmacologia , Farmacorresistência Bacteriana Múltipla/genética , Filogenia , Tuberculose/tratamento farmacológico , Sequenciamento Completo do Genoma/métodos , Testes de Sensibilidade Microbiana
2.
Antibiotics (Basel) ; 11(12)2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36551389

RESUMO

The epidemiology and genotypes of multidrug-resistant tuberculosis (MDR-TB), a global public health threat, remain limited. The genotypic distribution and factors associated with MDR-TB in upper northern Thailand between 2015 and 2019 were investigated. The DNA sequencing of rpoB, katG, and inhA promoter of 51 multidrug-resistant Mycobacterium tuberculosis isolates revealed nine patterns of the rpoB gene mutation distributed in seven provinces. The S531L mutation was the most common mutation in all provinces. The rpoB mutation in Chiang Rai, Chiang Mai, and Lampang was highly diverse compared to other areas. Here, the mutation profiles that have yet to be reported in northern Thailand (H526P, Q513P, and H526C) were detected in Chiang Rai province. The S315T katG mutation was the most common genotype associated with INH resistance, especially in Chiang Mai and Lampang. Further analysis of data from 110 TB patients (42 MDR-TB and 68 drug-susceptible TB) revealed that <60 years of age was a significant factor associated with MDR-TB (OR = 0.316, 95% CI 0.128−0.784, p = 0.011) and ≥60 years of age was a significant factor associated with the S315T katG-mutation (OR = 8.867, 95% CI 0.981−80.177, p = 0.047). This study highlighted the necessity for continuous surveillance and risk factor monitoring for effective control of MDR-TB.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...